banner



Find The Value Of 8

Example 27 - Find value of tan pi/8 - Chapter 3 Class 11

Example 27 - Chapter 3 Class 11 Trigonometric Functions - Part 2

Example 27 - Chapter 3 Class 11 Trigonometric Functions - Part 3

Example 27 - Chapter 3 Class 11 Trigonometric Functions - Part 4

Example 27 - Chapter 3 Class 11 Trigonometric Functions - Part 5

This video is only bachelor for Teachoo blackness users


Transcript

Instance 27 find the value of tan πœ‹/8. tan πœ‹/8 Putting Ο€ = 180Β° = tan (180Β°)/8 = tan (45Β°)/ii We detect tan (45Β°)/2 using tan 2x formula tan 2x = (2 tan⁑π‘₯)/(1 βˆ’π‘‘π‘Žπ‘›2π‘₯) Putting ten = (45Β°)/2 tan ("2 Γ— " (45Β°)/two) = (two tan⁑〖 (45Β°)/twoγ€—)/(1 βˆ’π‘‘π‘Žπ‘›2 (45Β°)/ii) tan 45Β° = (two tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›two (45Β°)/2) tan 45Β° = (ii tan⁑〖 (45Β°)/iiγ€—)/(i βˆ’π‘‘π‘Žπ‘›2 (45Β°)/2) 1 = (2 tan⁑〖 (45Β°)/2γ€—)/(1 βˆ’π‘‘π‘Žπ‘›ii (45Β°)/two) 1 – tan2 (45Β°)/2 = 2tan (45Β°)/two (As tan 45Β° = 1) Let tan (πŸ’πŸ“Β°)/𝟐 = x So, our equation becomes 1 – x2 = 2x 0 = 2x + x2 – ane x2 + 2x – 1 = 0 The higher up equation is of the form ax2 + bx + c = 0 where a = one, b = 2, c = βˆ’i Solution are x = (βˆ’ 𝑏 Β± √(𝑏ii βˆ’4π‘Žπ‘) )/twoπ‘Ž = (βˆ’ 2 Β± √((βˆ’ii)two βˆ’ 4 Γ— one Γ— (βˆ’1)) )/(2 Γ— 1) = (βˆ’two Β± √(4 + 4))/2 = (βˆ’ii Β± √8)/2 = (βˆ’2 Β± √(2 Γ— ii Γ— ii))/2 = (βˆ’two Β± two√2)/2 = (two ( βˆ’1 ±√2 ))/2 = –i Β± √2 Thus, ten = –one Β± √two tan (45Β°)/ii = –1 Β± √two But tan (45Β°)/2 = –i – √two is not possible as (45Β°)/2 = 22.fiveΒ° lies in first quadrant & tan is positive in showtime quadrant Therefore, tan (45Β°)/ii = βˆ’1 + √2 i.east. tan 𝝅/πŸ– = √𝟐 – ane

Find The Value Of 8,

Source: https://www.teachoo.com/2231/586/Example-27---Find-value-of-tan-pi-8---Chapter-3-Class-11/category/Examples/

Posted by: heywardforthishe.blogspot.com

Related Posts

0 Response to "Find The Value Of 8"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel